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The QCD phase diagram: outstanding issues

The QCD phase diagram is
just beginning to be
unraveled.

Two underlying
mechanisms:con�nement
and chiral symmetry
breaking is not yet
completely understood.
[Schaefer and Shuryak, 96]

Lattice techniques are
allowing us to draw lines
and points on this plot

Even more exciting as it
allowing us to understand
deeper the microscopic
mechanisms.

[Courtesy www.bnl.gov]
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Towards understanding the phase diagram: key ingredients

Symmetries and order parameters.
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Towards understanding the phase diagram: key ingredients

Symmetries and order parameters.

Role of anomalies and its connection to topological properties of QCD

Towards �nite � B : Curvature of the chiral crossover transition and
towards critical end-point.

Could not include updates on physics of heavy quarks, photon and
di-lepton rates, viscosities, QCD in magnetic �eld, QCD at strong
coupling, large N due to time constraint
[See talks by A. Kumar on jet quenching parameter in gauge theory Thu, QCD in magnetic �eld by A. Tomiya,

Wed 17:10, QCD near strong coupling by W. Unger, M. Klegrewe,hadron spectrum in QGP by T. Glesaaen,

Fri, spectral functions by H-T. Ding, Fri, large N QCD, Hacke tt Thu 12:40, Thu, N=2 QCD Itou, Thu 9:50 ]
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The phase diagram at� B = 0

For �nite quark masses, no unique order parameter.
Now well established that� B = 0 chiral symmetry restoration occurs via
crossover transition.
[Budapest-Wuppertal collaboration, 1309.5258, HotQCD collaboration, Bazavov et. al, 1407.6387]

However remnants of chiral symmetry are quite strong in observables.
Important update inTc from chiral observables[See talk by P. Steinbrecher, Wed 16:10]
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The phase diagram at� B = 0

EoS is close to the perturbative behaviour forT > 5Tc but close to the edge
of the error band[See talk by J. Weber, Thurs 8:50]

Screening masses of scalar/ pseudo-scalar excitations show deviation from
perturbation theory[ H. Sandmeyer et. al., HotQCD in prep]

Dynamical e�ects ofcharm quarksincluded till 1 GeV! important EoS
during cosmological evolution.[ Borsanyi et. al, 1606.07494]

T [MeV]

p/T4 (2+1+1)-f LQCD

ideal

3-loop, HTL

hadron gas

(2+1)-f LQCD

 0

 1

 2

 3

 4

 5

 6

 200  400  600  800  1000  1200  1400  1600  1800  2000

Sayantan Sharma Lattice 2018, Michigan State University, East Lansing



The phase diagram at� B = 0

Recent update EoS with Wilson fermions[WHOT QCD col., Phys.Rev.D95, 054502 (2017)]

measurement ofTc from chiral observables,[ETM Collaboration, 1805.06001]

Energy-Mom. tensor extracted using gradient ow. A peak in chiral
susceptibility observed even with Wilson fermions atm� � 400 MeV. New
results on EM tensor correlators[See talk by Y. Taniguchi, Thurs 9:10, A. Baba, Thu 12:00].
EM Tensor correlators calculated with better precision in pure glue
[See talk by Shirogane, Hirakida, Thus Morn. ]
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Sincemu; md << � QCD is UL(2) � UR(2) a good symmetry of QCD?

UL(2) � UR(2) ! SU(2)V � SU(2)A � UB (1)� UA(1)

Is UA(1) e�ectively restored atTc? ! can change the universality class of
the second order phase transition at� B = 0 or �rst order?
Either O(4) or UL(2) � UR(2)=UV (2)
[Pisarski & Wilczek, 84, Butti, Pelissetto & Vicari, 03, 13, Nakayama & Ohtsuki, 15]

New symmetries in highT ? [Rohrhofer, Fri 17:50] Anderson Transition at �niteT ?
[Holicki, Fri 15:20]

UA(1) not an exact symmetry! what observables to look for?

Degeneracy of the 2-point correlators[Shuryak, 94] ! higher point correlation
functions imp[Aoki, Fukaya & Taniguchi, 1209.2061]

� � � � �
V !1!

Z 1

0
d�

4m2
f � (�; mf )

(� 2 + m2
f )2

Su�cient condition for restoration in chiral limit:
� (� ) � � 3

[Aoki, Fukaya & Taniguchi, 1209.2061]
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Update on Eigenvalue spectrum of QCD Dirac operator
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for QCD spectrum with Highly improved
Staggered quarks towards the chiral limit
measured with overlap operator forT � 1:1Tc.
[ See talk by Lukas Mazur, Tues. 14:20]

role of non-analyticities?Seem to be reduced
but survive in the chiral limit with HISQ.
[ HotQCD collaboration, 1205.3535, V. Dick et. al. 1502.06190 ]

Non-Analyticities sensitive to lattice cut-o� e�ects. Reduces with lattice
spacing.See talk by K. Suzuki, Tues. 14:00, also 1711.09239
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Update on Eigenvalue spectrum of QCD Dirac operator
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for QCD spectrum with Highly improved
Staggered quarks towards the chiral limit
measured with overlap operator forT � 1:1Tc.
[ See talk by Lukas Mazur, Tues. 14:20]

role of non-analyticities?Seem to be reduced
but survive in the chiral limit with HISQ.
[ HotQCD collaboration, 1205.3535, V. Dick et. al. 1502.06190 ]

Not due to partial quenching:HISQ spectrum on the �nest lattices show
such a peak! continuum limit needed to resolve this issue![HotQCD in prep.]
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Zero modes show strong lattice cut-o� dependence
[G. Cossu et. al, 13, A. Tomiya et. al, 15,16]. Will not contribute in thermodynamic limit!

Non-analytic part still needs careful study. Analytic part of the spectrum
strongly suggest thatUA(1) is broken! [See talk by L. Mazur, Tues]

[ V. Dick, et. al, 1502.06190, 1602.02197, G. Cossu et. al., 1510.07395, K. Suzuki et. al. 1711.09239 ].

New update on volume dependence[See talk by K. Suzuki, Tues.] ! in the chiral limit
is vol. dep. milder?
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Zero modes show strong lattice cut-o� dependence
[G. Cossu et. al, 13, A. Tomiya et. al, 15,16]. Will not contribute in thermodynamic limit!

Non-analytic part still needs careful study. Analytic part of the spectrum
strongly suggest thatUA(1) is broken! [See talk by L. Mazur, Tues]

[ V. Dick, et. al, 1502.06190, 1602.02197, G. Cossu et. al., 1510.07395, K. Suzuki et. al. 1711.09239 ].
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From Dirac spectrum to Topological uctuations
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Since� is tiny,
F(� ) = 1

2 � t � 2
�
1 + b2� 2 + :::

�
.

[L. D. Debbio, H. Panagopoulos, E. Vicari, 0407068]

Strong non-Gaussianity in higher
order expansions. What causes
them?

� 1=4
t = AT � b.

b = 0 :9 � 1:2 for T < 250 MeV

Di�erent from dilute instanton gas:
b � 2.
[ from continuum extrapolated results with HISQ.
[ P. Petreczky, et. al., 1606.03145]. Agrees well with
independent study [ Bonati et. al, 1512.06746] and
with results with chiral fermions 1602.02197].

� t is studied as a function of quark
mass nearTc along with vol.
dependence[See talk by Y. Aoki, Tues 14:40]
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Towards interpreting these �ndings

Going beyond the interacting instanton liquid? Can there beinstanton-dyons
present� Tc due to non-trivial eigenvalues of Polyakov loop.
Hints from over-improved cooling studies from the lattice
[M. Ilgenfritz, M-Mueller Pruessker, et. al. 14, 15].

Using twisted boundary conditions of the valence fermionic(overlap)
operator can move the zero modes from one instanton-dyon to other.
[See for more details in talk by R. Larsen, Tues 15:20]

! fall o� of density pro�les at large distances can be a way to distinguish
between them?
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Towards interpreting these �ndings
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Improving topological tunneling at high temperatures

High temperatures! topological tunneling becomes rarer. Similar to going
to �ner lattice spacings.

New techniques developed: Reweighting ensembles with coarse grained
de�nition of Q [C. Bonati & M. D'Elia, 1709.10034, P. T. Jahn, G. Moore, D. Ro baina, 1806.01162]

allows to goT � 4Tc with N� = 10 lattices with reasonable cost.
[See talk by T. Jahn, Tues. 15:00]

0:00 0:01 0:02 0:03
1=N2

�

� 13:0

� 12:5

� 12:0

� 11:5

� 11:0

� 10:5

� 10:0

ln
� �=

T
4 c

�

tW = 1 :2a2

tW = 2 :4a2

tZ = 1 :2a2

tZ = 2 :4a2

0:00 0:01 0:02 0:03
1=N2

�

� 2

� 1

0

1

2

3

4

5

�=
T

4 c

� 10� 5

Sayantan Sharma Lattice 2018, Michigan State University, East Lansing



Improving topological tunneling at high temperatures

High temperatures! topological tunneling becomes rarer. Similar to going
to �ner lattice spacings.

Reweighting applied in full QCD improvesQ measurement at highT
! �nite vol. dependence under control
[C. Bonati et. al., 1807.07954, and see also 1709.10034]

Many other techniques discussed : Metadynamics, Open boundary
conditions.. [F. San�llipo et. al, Borsanyi et. al, 1606.07494, J. Frison et. al., 1606.07175]
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Towards understanding the Columbia plot

1st order

Z(2)?

Z(2)

Z(2)

Tricritical? ms<<95 MeV

O(4)?

mu

mu=md

Crossover

Physical point

ms/160 (Nt=8 HISQ, 2018)
critical scaling 

1st order? UA(1) restored

Z(2)?

m< 5MeV ? [JLQCD 18]

ms/40, Eigenvalue spectrum (HISQ, 18)
UA(1) broken

mu,s=0

ms

Nf=2 QCD 

M_pi<50 MeV (Nt=6, HISQ, 2017)

� Approaching chiral limit at �xedms

� Nf = 2 QCD updates with overlap
valence on overlap sea via
reweighting[See talk by K. Suzuki]

� HISQ eigenvalue spectrum for 2+1
QCD towards chiral limit
[See talk by L. Mazur]

� From spectral density extractTc ,
order of transition inmq ! 0
[See talk by G. Endrodi, Thurs. 11:40]
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Towards understanding the Columbia plot

1st order

Z(2)?

Z(2)

Z(2)

Tricritical? ms<<95 MeV

O(4)?

mu

mu=md

Crossover

Physical point

ms/160 (Nt=8 HISQ, 2018)
critical scaling 

1st order? UA(1) restored

Z(2)?

m< 5MeV ? [JLQCD 18]

ms/40, Eigenvalue spectrum (HISQ, 18)
UA(1) broken

mu,s=0

ms

Nf=2 QCD 

M_pi<50 MeV (Nt=6, HISQ, 2017)

Approaching chiral limit at
physicalms

New: Scaling analysis of chiral condensate with Highly
Improved Staggered quarks on �ner lattices
N� = 8 ; 12.
[See talk by Sheng-Tai Lee, Thurs. 11:20]

Peak of � M decreases with volume ruling out 1st order
transition for m� � 80 MeV.
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Towards understanding the Columbia plot
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ms/40, Eigenvalue spectrum (HISQ, 18)
UA(1) broken

mu,s=0
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Nf=2 QCD 

M_pi<50 MeV (Nt=6, HISQ, 2017)

Approaching chiral limit at
physicalms

Scaling seems to be consistent
with O(2) rather thanZ2.
[A. Lahiri et. al., 1807.05727]
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Towards understanding the Columbia plot

1st order

Z(2)?

Z(2)

Z(2)

Tricritical? ms<<95 MeV

O(4)?

mu
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Crossover

Physical point

ms/160 (Nt=8 HISQ, 2018)
critical scaling 

1st order? UA(1) restored

Z(2)?

m< 5MeV ? [JLQCD 18]

ms/40, Eigenvalue spectrum (HISQ, 18)
UA(1) broken

mu,s=0

ms

Nf=2 QCD 

M_pi<50 MeV (Nt=6, HISQ, 2017)

� Along Nf = 3 line

� Nf = 3 QCD scaling analysis with HISQ
[A. Bazavov et. al.,1701.03548]

� Reweighting expansion with2 + Nf avors.
[N. Yamada et. al, 1602.04595].

� Nf = 3 QCD with Wilson fermions give mPS < 170
MeV
[X Jin et. al.,1706.01178]

� The mc
� could be extremely small forNf = 3 ; 4

[de Forcrand & M. D'Elia, 1702.00330]

� New update on Nf = 4 phase diagram with Wilson
clover fermions
[See talk by H. Ohno, Thurs. 12:20]

� Very challenging! need to go to continuum limit..scope
for new lattice techniques.
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Towards understanding the Columbia plot

1st order

Z(2)?

Z(2)

Z(2)

Tricritical? ms<<95 MeV

O(4)?

mu

mu=md

Crossover

Physical point

ms/160 (Nt=8 HISQ, 2018)
critical scaling 

1st order? UA(1) restored

Z(2)?

m< 5MeV ? [JLQCD 18]

ms/40, Eigenvalue spectrum (HISQ, 18)
UA(1) broken

mu,s=0

ms

Nf=2 QCD 

M_pi<50 MeV (Nt=6, HISQ, 2017)

� Nf as a continuous parameter

� Upper bound on tricrit. scaling
Nf < 2 ! �rst order transition for
Nf = 2 ? Check at �ner lattices?
[See talk by F. Cuteri, Thurs. 11:00]

Sayantan Sharma Lattice 2018, Michigan State University, East Lansing



Adding a new axis to the Columbia plot: Imaginary�
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Bonati et. al. 18, M_pi> 50 MeV

� For � B =T = i (2n + 1) � an exactZ2

symmetry. Spontaneously broken at
Roberge-WeissTRW . Order
parameter: ImL
[See talk by J. Goswami, Wed 16:50]
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Adding a new axis to the Columbia plot: Imaginary�
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Bonati et. al. 18, M_pi> 50 MeV

� N� = 4 QCD with stout fermions, no
sign of �rst order RW transition for
m� > 50 MeV. [C. Bonati et. al 1807.02106].

� Most plausibly the chiral and RW
end-point occur at the sameT ?
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Adding a new axis to the Columbia plot: Imaginary�
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Bonati et. al. 18, M_pi> 50 MeV

� UnderZ2, ReL ! ReL , Im L ! -Im
L.

� Im L showsZ2 scaling with HISQ
fermions atN� = 4 ! What about ReL?
[See talk by J. Goswami, Wed 16:50].
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Adding a new axis to the Columbia plot: Imaginary�
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Curvature of the chiral crossover line

T c (� B )
T c (0) = 1 � � 2

� 2
B

T c (0) 2 � � 4
� 4

B
T c (0) 4

For strangess neutral system,� 2 = 0 :0120(20)with Taylor series and HISQ
fermions. [HotQCD collaboration, 1807.05607, talk by P. Steinbrecher]
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Curvature of the chiral crossover line
T c (� B )
T c (0) = 1 � � 2

� 2
B

T c (0) 2 � � 4
� 4

B
T c (0) 4

Consistent with imaginary chemical potential method and stout fermions
� 2 = 0 :0135(20) [C. Bonati et. al., 1805.02960]

removes earlier possible tension between two methods![courtesy M. D'Elia QM 18]
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Curvature of the chiral crossover line

T c (� B )
T c (0) = 1 � � 2
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Chiral observables show little curvature as a function of� B < 250 MeV.
[HotQCD collaboration, 1807.05607]

Need much higher order series in� B ?
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Critical-end point search from Lattice

The Taylor series for� B
2 (� B ) should diverge at the critical point for

Nf = 2 . On �nite lattice � B
2 peaks, ratios of Taylor coe�cients equal,

indep. of volume.

The radius of convergence determines location of the critical point.
[Gavai& Gupta, 03]

De�nition: r2n �
r

2n(2n � 1)
�
�
�

� B
2n

� B
2n+2

�
�
� .

� Strictly de�ned for n ! 1 . How largen could be on a �nite lattice?
� Signal to noise ratio deteriorates for higher order� B

n .
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Critical-end point search from Lattice

Current bound for CEP:� B =T > 3 for 135� T � 150 MeV
[Bielefeld-BNL-CCNU, 1701.04325, update 2018].

The rn extracted by analytic continuation of imaginary� B data
[ D'Elia et. al., 1611.08285 ] consistent with this bound.

Results with a lower bound?[Datta et. al., 1612.06673, Fodor and Katz, 04] ! need to
understand the systematics in these studies. Ultimately all estimates will
agree in the continuum limit!
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Summary and Outlook

Lattice QCD allows us to calculate bulk thermodynamic quantities, � top with
very high precision for a wide range of temp. with updated estimates onTc .
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Summary and Outlook

Lattice QCD allows us to calculate bulk thermodynamic quantities, � top with
very high precision for a wide range of temp. with updated estimates onTc .

Beginning to explore �nite� B region with new results on the curvature of
chiral crossover line.

Latest bounds on the critical end-point LQCD data suggest
� B (CEP)=T > 3 in the regionT = 145 � 150 MeV.

Lattice methods now give more insights on the Columbia plot! ultimately
allow us to understand the phase diagram forNf = 2 + 1 QCD.

Increased sophistication towards understanding the fate ofUA(1) towards
the chiral limit for QCD! ultimately will lead to our understanding of the
deeper relation between anomalies and underlying topologyin QCD.
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